JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

The nodule conductance to O₂ diffusion increases with phytase activity in N₂-fixing Phaseolus vulgaris L.

To understand the relationship between phosphorus use efficiency (PUE) and respiration for symbiotic nitrogen fixation (SNF) in legume nodules, six recombinant inbred lines of common bean (RIL Phaseolus vulgaris L.), contrasting in PUE for SNF, were inoculated with Rhizobium tropici CIAT899, and grown under hydroaeroponic culture with sufficient versus deficient P supply (250 versus 75 μmol P plant(-1) week(-1)). At the flowering stage, the biomass of plants and phytase activity in nodules were analyzed after measuring O2 uptake by nodulated roots. Our results show that the P-deficiency significantly increased the phytase activity in nodules of all RILs though with highest extent for RILs 147, 29 and 83 (ca 45%). This increase in phytase activity was associated with an increase in nodule respiration (ca 22%) and in use of the rhizobial symbiosis (ca 21%). A significant correlation was found under P-deficiency between nodule O2 permeability and phytase activity in nodules for RILs 104, 34 and 115. This observation is to our knowledge the first description of a correlation between O2 permeability and phytase activity of a legume nodule. It is concluded that the variation of phytase activity in nodules can increase the internal utilization of P and might be involved in the regulation of nodule permeability for the respiration linked with SNF and the adaptation to P-deficiency.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app