JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Osthole prevents intestinal ischemia-reperfusion-induced lung injury in a rodent model.

BACKGROUND: Intestinal ischemia-reperfusion (II/R) is associated with high morbidity and mortality. The aim of this study was to investigate the effects of osthole on lung injury and mortality induced by II/R.

METHODS: A rat model of II/R was induced by clamping the superior mesenteric artery for 90 min followed by reperfusion for 240 min. Osthole was administrated intraperitoneally at 30 min before intestinal ischemia (10 or 50 mg/kg). The survival rate and mean arterial pressure were observed. Blood samples were obtained for blood gas analyses. Lung injury was assessed by the histopathologic changes (hematoxylin and eosin staining), lung wet-to-dry weight ratio, and pulmonary permeability index. The levels of reactive oxygen species, malondialdehyde, interleukin 6, and tumor necrosis factor α, as well as the activities of superoxide dismutase and myeloperoxidase in lung were measured.

RESULTS: The survival rate, ratio of arterial oxygen tension to fraction of inspired oxygen, and mean arterial pressure decreased significantly after II/R. Results also indicated that II/R-induced severe lung injury evidenced by increase in pathologic scores, lung wet-to-dry weight ratio, and pulmonary permeability index, which was accompanied by increases in the levels of pulmonary reactive oxygen species, malondialdehyde, interleukin 6, tumor necrosis factor α, and the pulmonary myeloperoxidase activity and a decrease in superoxide dismutase activity. Osthole could significantly ameliorate lung injury and improve the previously mentioned variables.

CONCLUSIONS: These findings indicated that osthole could attenuate the lung injury induced by II/R in rats, at least in part, by inhibiting inflammatory response and oxidative stress.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app