Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Formulation, development and optimization of raloxifene-loaded chitosan nanoparticles for treatment of osteoporosis.

CONTEXT: Osteoporosis (OP) is a disease of skeletal system and is associated with fragility fracture at the hip, spine and wrist. Various drugs have been used to treat OP. One of them is raloxifene hydrochloride (RLX), a second-generation selective estrogen receptor modulator (SERM) approved by the USFDA. RLX possesses only 2% absolute bioavailability (BA) by oral route due to its extensive first-pass metabolism.

OBJECTIVE: The purpose of the current research work was to develop and evaluate RLX-loaded chitosan nanoparticles (CS-NPs) for treatment of OP with enhanced BA.

MATERIALS AND METHODS: The RLX-loaded CS-NPs were prepared by gelation of CS with tripolyphosphate (TPP) by ionic cross-linking. Formulation was optimized and in vitro drug release and in vivo study were performed.

RESULTS AND DISCUSSIONS: CS-NPs were formed by the ionic gelation method. The particle size, entrapment efficiency and loading efficiency varied from 216.65 to 1890 nm, 32.84 to 97.78% and 23.89 to 62.46%, respectively. Release kinetics showed diffusion-controlled and Fickian release pattern. In vivo study indicated higher plasma drug concentration with NPs administered intranasally as compared to drug suspension administered through oral route (p < 0.05). A significantly higher drug concentration in plasma was achieved in 10 min after nasal administration with respect to oral administration.

CONCLUSION: The results suggest that RLX-loaded CS-NPs have better BA and would be a promising approach for intranasal (i.n.) delivery of RLX for the treatment of OP.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app