Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Effects of resveratrol on gut microbiota and fat storage in a mouse model with high-fat-induced obesity.

Food & Function 2014 June
Recent studies have investigated the anti-obesity effect of resveratrol, but the pathways through which resveratrol resists obesity are not clear. In the present study, we hypothesize that resveratrol exerts anti-obesity effects that are likely mediated by mechanisms of regulating gut microbes, and in turn, improving fat storage and metabolism. Gut microbes, glucose and lipid metabolism in high-fat diet (HF) mice in vivo are investigated after resveratrol treatment. Several biochemical markers are measured. Fluorescence in situ hybridization and flow cytometry are used to monitor and quantify the changes in gut microbiota. The key genes related to fat storage and metabolism in the liver and visceral adipose tissues are measured by real-time PCR. The results show that resveratrol (200 mg per kg per day) significantly lowers both body and visceral adipose weights, and reduces blood glucose and lipid levels in HF mice. Resveratrol improves the gut microbiota dysbiosis induced by the HF diet, including increasing the Bacteroidetes-to-Firmicutes ratios, significantly inhibiting the growth of Enterococcus faecalis, and increasing the growth of Lactobacillus and Bifidobacterium. Furthermore, resveratrol significantly increases the fasting-induced adipose factor (Fiaf, a key gene negatively regulated by intestinal microbes) expression in the intestine. Resveratrol significantly decreases mRNA expression of Lpl, Scd1, Ppar-γ, Acc1, and Fas related to fatty acids synthesis, adipogenesis and lipogenesis, which may be driven by increased Fiaf expression. The Pearson's correlation coefficient shows that there is a negative correlation between the body weight and the ratios of Bacteroidetes-to-Firmicutes. Therefore, resveratrol mediates the composition of gut microbes, and in turn, through the Fiaf signaling pathway, accelerates the development of obesity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app