JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

PET tracers in musculoskeletal disease beyond FDG.

Musculoskeletal tumors comprise a multitude of tumor entities with different grades of malignancy, biological behavior, and therapeutic options. Positron emission tomography (PET) using the glucose analog [18F]fluorodeoxyglucose (FDG) is an established imaging modality for detection and staging of cancer, despite some shortcomings. Numerous studies have evaluated the role of PET imaging musculoskeletal tumors beyond FDG. The use of more specific novel PET radiopharmaceuticals such as the proliferation marker [18F]fluorodeoxythymidine (FLT), the bone-imaging agent [18F]sodium fluoride, amino acid tracers ([11C]methionine, [18F]fluoroethyltyrosine), or biomarkers of neoangiogenesis ([18F]galacto-RGD) can potentially provide insights into the biology of musculoskeletal tumors with focus on tumor grading, treatment monitoring, posttherapy assessment, and estimation of individual prognosis. In this article, we review the potential role of these alternative PET tracers in musculoskeletal disorders with emphasis on oncologic applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app