Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

Reduced cerebral blood flow with orthostasis precedes hypocapnic hyperpnea, sympathetic activation, and postural tachycardia syndrome.

Hypertension 2014 June
Hyperventilation and reduced cerebral blood flow velocity can occur in postural tachycardia syndrome (POTS). We studied orthostatically intolerant patients, with suspected POTS, with a chief complaint of upright dyspnea. On the basis of our observations of an immediate reduction of cerebral blood flow velocity with orthostasis, we hypothesize that the resulting ischemic hypoxia of the carotid body causes chemoreflex activation, hypocapnic hyperpnea, sympathetic activation, and increased heart rate and blood pressure in this subset of POTS. We compared 11 dyspneic POTS subjects with 10 healthy controls during a 70° head-up tilt. In POTS subjects during initial orthostasis before blood pressure recovery; central blood volume and mean arterial pressure were reduced (P<0.025), resulting in a significant (P<0.001) decrease in cerebral blood flow velocity, which temporally preceded (17±6 s; P<0.025) a progressive increase in minute ventilation and decrease in end tidal CO2 (P<0.05) when compared with controls. Sympathoexcitation, measured by muscle sympathetic nerve activity, was increased in POTS (P<0.01) and inversely proportional to end tidal CO2 and resulted in an increase in heart rate (P<0.001), total peripheral resistance (P<0.025), and a decrease in cardiac output (P<0.025). The decrease in cerebral blood flow velocity and mean arterial pressure during initial orthostasis was greater (P<0.025) in POTS. Our data suggest that exaggerated initial central hypovolemia during initial orthostatic hypotension in POTS results in reduced cerebral blood flow velocity and postural hypocapnic hyperpnea that perpetuates cerebral ischemia. We hypothesize that sustained hypocapnia and cerebral ischemia produce sympathoexcitation, tachycardia, and a statistically significant increase in blood pressure.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app