Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

MiR-199a-5p loss up-regulated DDR1 aggravated colorectal cancer by activating epithelial-to-mesenchymal transition related signaling.

BACKGROUND: Discoidin domain receptors1 (DDR1) is associated with tumor progression, and its dysregulated expression has been observed in many cancers.

AIM: We aim to explore molecular mechanism underlying the role of DDR1 in colorectal cancer development.

METHODS: Immunohistochemistry and Western blot were applied to examine the DDR1 expression. Real-time RT-PCR and Western blot were performed to determine the expression of miR-199a-5p and DDR1. Luciferase reporter assay was used to determine whether DDR1 was a target of miR-199a-5p. Effects of miR-199a-5p and DDR1 on colorectal cell proliferation, colony formation, cell cycle progression, invasion and migration were then investigated. Western blot was used to determine the relative signal pathways.

RESULTS: Increased DDR1 and decreased miR-199a-5p expression coexisted in CRC, knockdown of DDR1 or overexpression of miR-199a-5p both resulted in reduced colony formation, invasive and migratory capabilities of human CRC LOVE1 and LOVO cells. It was also found that overexpression of miR-199a-5p led to decreased DDR1, MMP2, N-cadherin and vimentin expression and increased E-cadherin expression in both CRC cell lines. However, down-regulation of miR-199a-5p resulted in the opposite effects. Dual luciferase reporter assay confirmed that miR-199a-5p could directly target DDR1 through binding to its 3'-UTR.

CONCLUSIONS: Our findings indicated that up-regulation of DDR1 induced by miR-199a-5p down-regulation may contribute to the development and progression of CRC, and this effect may be associated with increased invasiveness, at least in part, via activating the EMT-related signaling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app