JOURNAL ARTICLE

Ciliary neurotrophic factor reverses aberrant mitochondrial bioenergetics through the JAK/STAT pathway in cultured sensory neurons derived from streptozotocin-induced diabetic rodents

Subir Roy Chowdhury, Ali Saleh, Eli Akude, Darrell R Smith, Dwane Morrow, Lori Tessler, Nigel A Calcutt, Paul Fernyhough
Cellular and Molecular Neurobiology 2014, 34 (5): 643-9
24682898
Mitochondrial dysfunction occurs in sensory neurons and contributes to diabetic neuropathy. Ciliary neurotrophic factor (CNTF) stimulates axon regeneration in type 1 diabetic rodents and prevents deficits in axonal caliber, nerve conduction, and thermal sensation. We tested the hypothesis that CNTF enhances sensory neuron function in diabetes through JAK/STAT (Janus kinase/signal transducers and activators of transcription) signaling to normalize impaired mitochondrial bioenergetics. The effect of CNTF on gene expression and neurite outgrowth of cultured adult dorsal root ganglia (DRG) sensory neurons derived from control and streptozotocin (STZ)-induced diabetic rodents was quantified. Polarization status and bioenergetics profile of mitochondria from cultured sensory neurons were determined. CNTF treatment prevented reduced STAT3 phosphorylation (Tyr 705) in DRG of STZ-diabetic mice and also enhanced STAT3 phosphorylation in rat DRG cultures. CNTF normalized polarization status of the mitochondrial inner membrane and corrected the aberrant oligomycin-induced mitochondrial hyperpolarization in axons of diabetic neurons. The mitochondrial bioenergetics profile demonstrated that spare respiratory capacity and respiratory control ratio were significantly depressed in sensory neurons cultured from STZ-diabetic rats and were corrected by acute CNTF treatment. The positive effects of CNTF on neuronal mitochondrial function were significantly inhibited by the specific JAK inhibitor, AG490. Neurite outgrowth of sensory neurons from age-matched control and STZ-induced diabetic rats was elevated by CNTF and blocked by AG490. We propose that CNTF's ability to enhance axon regeneration and protect from fiber degeneration in diabetes is associated with its targeting of mitochondrial function and improvement of cellular bioenergetics, in part, through JAK/STAT signaling.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
24682898
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"