JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Cell cycle analysis can differentiate thin melanomas from dysplastic nevi and reveals accelerated replication in thick melanomas.

Cell replication integrates aberrations of cell cycle regulation and diverse upstream pathways which all can contribute to melanoma development and progression. In this study, cell cycle regulatory proteins were detected in situ in benign and malignant melanocytic tumors to allow correlation of major cell cycle fractions (G1, S-G2, and G2-M) with melanoma evolution. Dysplastic nevi expressed early cell cycle markers (cyclin D1 and cyclin-dependent kinase 2; Cdk2) significantly more (p < 0.05) than common nevi. Post-G1 phase markers such as cyclin A, geminin, topoisomerase IIα (peaking at S-G2) and aurora kinase B (peaking at G2-M) were expressed in thin (≤1 mm) melanomas but not in dysplastic nevi, suggesting that dysplastic melanocytes engaged in the cell cycle do not complete replication and remain arrested in G1 phase. In malignant melanomas, the expression of general and post-G1 phase markers correlated well with each other implying negligible cell cycle arrest. Post-G1 phase markers and Ki67 but none of the early markers cyclin D1, Cdk2 or minichromosome maintenance protein 6 (Mcm6) were expressed significantly more often in thick (>1 mm) than in thin melanomas. Marker expression did not differ between metastatic melanomas and thick melanomas, with the exception of aurora kinase A of which the expression was higher in metastatic melanomas. Combined detection of cyclin A (post-G1 phase) with Mcm6 (replication licensing) and Ki67 correctly classified thin melanomas and dysplastic nevi in 95.9 % of the original samples and in 93.2 % of cross-validated grouped cases at 89.5 % sensitivity and 92.6 % specificity. Therefore, cell cycle phase marker detection can indicate malignancy in early melanocytic lesions and accelerated cell cycle progression during vertical melanoma growth.

Full text links

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app