Add like
Add dislike
Add to saved papers

Fabrication and characterization of silver nanoparticles using Delonix elata leaf broth.

The synthesis of nanoparticles from plant sources has proved to be an effective and alternative method for the novel production of nanoparticles. This paper reports the bioreduction of silver nitrate into silver nanoparticle by the leaf extract of Delonix elata. The synthesized silver nanoparticles were characterized by UV-visible (UV-vis) spectroscopy, Fourier infrared spectroscopy (FT-IR), X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) coupled with Energy Dispersive Spectroscopy (EDS), high resolution transmission electron microscope (HRTEM). In addition the size of the NPs was calculated by using Malvern Zetasizer and the stability by zeta potential. UV-vis spectra show the surface plasmon resonance (SPR) at 432 nm. This reveals the reduction of silver ions (Ag(+)) into silver (Ag°) and indicating the formation of silver nanoparticles (AgNPs). SEM analysis revealed the spherical shape of the particles with sizes in the range of 35-45 nm and EDS spectrum confirmed the presence of silver along with other elements in the plant metabolite. The XRD analysis showed that the AgNPs are crystalline in nature and have face-centered cubic structure. FT-IR spectra show the existence of biomolecules responsible for the reduction of silver nitrate. The size of the AgNPs estimated from particle size distribution curve shows the 70 nm. The zeta potential of AgNPs was found to be -18 mV, indicating the dispersion and stability.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app