Add like
Add dislike
Add to saved papers

FTY720 impairs CD8 T-cell function independently of the sphingosine-1-phosphate pathway.

Fingolimod (FTY720) is a multiple sclerosis (MS) therapeutic that upon phosphorylation causes the internalization of sphingosine-1-phosphate receptors (S1PR) and traps CCR7+ T-cells in lymph nodes but relatively spares CCR7-effector T-cells. Nonetheless, FTY720-treated patients are more susceptible to viral infections, indicating a CD8 T-cell defect. Thus, the effects of FTY720 on CD8 T-cells were investigated. To this end, we utilized experimental autoimmune encephalomyelitis (EAE) and a murine influenza model. CD8 T-cell trafficking, IFNγ and Granzyme B (GrB) production were assessed by flow cytometry. CD8 T-cell cytotoxic function was assessed in vitro by an LDH release assay. FTY720 not only ameliorated EAE by sequestering T-cells, but also reduced IFNγ and Granzyme B (GrB) in splenic CD8 T-cells. Murine influenza infection was exacerbated and mortality was increased, as FTY720 inhibited CD8 T-cell GrB production and lung infiltration. Remarkably, only the unphosphorylated compound was able to reduce IFNγ and GrB levels in CD8 T-cells and inhibits their cytotoxic function in vitro. The phosphorylated moiety had no effect in vitro, indicating that CD8 T-cell suppression by FTY720 is independent of S1PR modulation. The addition of arachidonic acid rescued CD8 T-cell function, suggesting that this effect may be mediated via inhibition of cytosolic phospholipase A2. Herein, we demonstrate that FTY720 suppresses CD8 T-cells independently of its trafficking effects and S1PR modulation. This provides a novel explanation not only for the increased rate of viral infections in FTY720-treated patients, but also for its efficacy in MS, as CD8 T-cells have emerged as crucial mediators of MS pathogenesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app