JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

7,7,8,8-Tetracyanoquinodimethane-assisted one-step electrochemical exfoliation of graphite and its performance as an electrode material.

Nanoscale 2014 May 8
A green approach for the preparation of water-dispersible functionalized graphene via one-step electrochemical exfoliation of graphite using 7,7,8,8-tetracyanoquinodimethane (TCNQ) anions as surface modifiers and electrolytes was described. TCNQ is an organic charge-transfer complex with electron accepting and noteworthy electrical properties. The exfoliation of graphite to a few-layer graphene sheets was confirmed by transmission electron microscopy (TEM) and atomic force microscopy (AFM) image analysis. The chemical state, surface functional groups and chemical compositions of bulk graphite as well as TCNQ-functionalized graphene sheets were investigated by Fourier-transform infrared (FT-IR) and X-ray photoelectron spectroscopy (XPS) analysis. Adsorption of TCNQ onto the surface of graphene sheets was confirmed by the appearance of the N1s peak at ∼399.4 eV in the XPS of TCNQ-functionalized graphene. Exfoliation of bulk graphite to functionalized graphene sheets was further confirmed by the appearance of a sharp single peak at ∼2695 cm(-1) along with increased intensity ratios of the D-band to the G-band. Electrochemical performance of a TCNQ-functionalized graphene sheet was investigated using 1 M Na2SO4 and 1 M KOH aqueous solutions. Cyclic voltammetry (CV) and galvanometric charge-discharge experiments revealed that TCNQ-functionalized graphene could be used as a supercapacitor electrode material. The specific capacitance values of TCNQ-modified graphene measured with electrolytes (1 M KOH and 1 M Na2SO4) were 324 and 140 F g(-1), respectively, at a current density of 1 A g(-1). Impedance spectroscopic analysis revealed that the charge transfer process was dependent on surface functionalization and interaction between the electrode and the electrolyte.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app