JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Synthesis and in vitro and in vivo evaluation of SiFA-tagged bombesin and RGD peptides as tumor imaging probes for positron emission tomography.

Gastrin-releasing-peptide (GRP)-receptors and αvβ3-integrins are widely discussed as potential target structures for oncological imaging with positron emission tomography (PET). Favored by the overexpression of receptors on the surface of tumor cells good imaging characteristics can be achieved with highly specific radiolabeled receptor ligands. PEGylated bombesin (PESIN) derivatives as specific GRP receptor ligands and RGD (one-letter codes for arginine-glycine-aspartic acid) peptides as specific αvβ3 binders were synthesized and tagged with a silicon-fluorine-acceptor (SiFA) moiety. The SiFA synthon allows for a fast and highly efficient isotopic exchange reaction at room temperature giving the [(18)F]fluoride labeled peptides in up to 62% radiochemical yields (d.c.) and ≥99% radiochemical purity in a total synthesis time of less than 20 min. Using nanomolar quantities of precursor high specific activities of up to 60 GBq μmol(-1) were obtained. To compensate the high lipophilicity of the SiFA moiety various hydrophilic structure modifications were introduced leading to significantly reduced logD values. Competitive displacement experiments with the PESIN derivatives showed a 32 to 6 nM affinity to the GRP receptor on PC3 cells, and with the RGD peptides a 7 to 3 μM affinity to the αvβ3 integrins on U87MG cells. All derivatives proved to be stable in human plasma over at least 120 min. Small animal PET measurements and biodistribution studies revealed an enhanced and specific accumulation of the RGD peptide (18)F-SiFA-LysMe3-γ-carboxy-d-Glu-RGD (17) in the tumor tissue of U87MG tumor-bearing mice of 5.3% ID/g whereas the PESIN derivatives showed a high liver uptake and only a low accumulation in the tumor tissue of PC3 xenografts. Stability studies with compound 17 provided further information on its metabolism in vivo. These results altogether demonstrate that the reduction of the overall lipophilicity of SiFA tagged RGD peptides is a promising approach for the generation of novel potent (18)F-labeled imaging agents.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app