JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Positron emission tomography assessment of large vessel inflammation in patients with newly diagnosed, biopsy-proven giant cell arteritis: a prospective, case-control study.

BACKGROUND: Positron emission tomography (PET) scan is emerging as a promising imaging technique to detect large-vessel inflammation in giant cell arteritis (GCA). However, the lack of a standardised definition of arteritis based on (18)fluorodeoxyglucose (FDG) uptake is an important limitation to the use of PET scan for diagnostic purposes.

OBJECTIVE: To prospectively assess the intensity and distribution of FDG uptake at different vascular territories in patients with newly diagnosed GCA compared with controls.

METHODS: 32 consecutive, biopsy-proven, GCA patients treated with glucocorticoids for ≤3 days were included. The control group consisted of 20 individuals, who underwent PET/CT for cancer staging. Maximal standardised uptake value (SUVm) was calculated at four aortic segments, supraaortic branches and iliac-femoral territory. Sensitivity and specificity was calculated by receiver-operator characteristic curves (ROC) analysis.

RESULTS: Mean SUVm was significantly higher in patients than in controls in all vessels explored and correlated with acute-phase reactants and serum IL-6. Mean of the SUVm at all the vascular territories had an area under the curve (AUC) of 0.830, and a cut-off of 1.89 yielded a sensitivity of 80% and a specificity of 79% for GCA diagnosis. There were no significant differences in AUC among the vascular beds examined.

CONCLUSIONS: FDG uptake by large vessels has a substantial sensitivity and specificity for GCA diagnosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app