Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Theoretical and experimental examination of particle-particle interaction effects on induced dipole moments and dielectrophoretic responses of multiple particle chains.

Electrophoresis 2014 July
Dielectrophoresis (DEP), an electrokinetic phenomenon based on particle polarizations in nonuniform electric fields, is increasingly employed for particle and cell characterizations and manipulations in microdevices. However, particle number densities are rarely varied and particle-particle interactions are largely overlooked, but both affect particle's effective polarizations by changing the local electric field, which directly impacts particle assembly into chains. This work examines theoretical and experimental particle-particle interactions and dielectrophoretic responses in nonuniform electric fields, then presents individual and chain velocities of spherical polystyrene microparticles and red blood cells (RBCs) under DEP forces in a modified quadruple electrode microdevice. Velocities are independently compared between 1, 2, 3, and 4 polystyrene beads and RBCs assembled into chains aligned with the electric field. Simulations compared induced dipole moments for particles experiencing the same (single point) and changing (multiple points) electric fields. Experiments and simulations are compared by plotting DEP velocities versus applied signal frequency from 1 kHz to 80 MHz. Simulations indicate differences in the DEP force exerted on each particle according to chain position. Simulations and experiments show excellent qualitative agreement; chains with more particles experienced a decrease in the DEP response for both polystyrene beads and RBCs. These results advance understanding of the extent that induced dipole polarizations with multiple particle chains affect observed behaviors in electrokinetic cellular diagnostic systems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app