Add like
Add dislike
Add to saved papers

Cardiomyocyte specific peroxisome proliferator-activated receptor-α overexpression leads to irreversible damage in ischemic murine heart.

Life Sciences 2014 May 3
AIMS: Peroxisome proliferator-activated receptor (PPAR)-α is downregulated in ischemic myocardium resulting in substrate switch from fatty acid oxidation to glucose utilization. Pharmacological PPAR-α activation leads to increased fatty acid oxidation and myocardial lipotoxicity. The aim of our study was to investigate the role of cardiomyocyte specific PPAR-α overexpression in myocardial adaptation to repetitive ischemic injury without myocardial infarction.

MAIN METHODS: Repetitive, brief I/R was performed in male and female MHC-PPAR-α overexpressing and wildtype-C57/Bl6 (WT)-mice, age 10-12 weeks, for 3 and 7 consecutive days. After echocardiography, their hearts were excised for histology and gene/protein-expression measurements (Taqman/Western blot).

KEY FINDINGS: MHC-PPAR-α mice developed microinfarctions already after 3 days of repetitive I/R in contrast to interstitial fibrosis in WT-mice. We found higher deposition of glycogen, increased apoptosis and dysfunctional regulation of antioxidative mediators in MHC-PPAR-α mice. MHC-PPAR-α mice presented with maladaptation of myosin heavy chain isoforms and worse left ventricular dysfunction than WT-mice. We found prolonged, chemokine-driven macrophage infiltration without induction of proinflammatory cytokines in MHC-PPAR-α mice. Persistent accumulation of myofibroblasts in microinfarctions indicated active remodeling resulting in scar formation in contrast to interstitial fibrosis without microinfarctions in WT-mice. However, MHC-PPAR-α hearts had only a weak induction of tenascin-C in contrast to its strong expression in WT-hearts.

SIGNIFICANCE: Cardiomyocyte-specific PPAR-α overexpression led to irreversible cardiomyocyte loss with deteriorated ventricular function during brief, repetitive I/R episodes. We identified higher glycogen deposition, increased apoptosis, deranged antioxidative capacity and maladaptation of contractile elements as major contributors involved in the modulation of post-ischemic inflammation and remodeling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app