JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

A sensitive quantum dots-based "OFF-ON" fluorescent sensor for ruthenium anticancer drugs and ctDNA.

In this contribution, a simple and sensitive fluorescent sensor for the determination of both the three ruthenium anticancer drugs (1 to 3) and calf thymus DNA (ctDNA) was established based on the CdTe quantum dots (QDs) fluorescence "OFF-ON" mode. Under the experimental conditions, the fluorescence of CdTe QDs can be effectively quenched by ruthenium anticancer drugs because of the surface binding of these drugs on CdTe QDs and the subsequent photoinduced electron transfer (PET) process from CdTe QDs to ruthenium anticancer drugs, which render the system into fluorescence "OFF" status. The system can then be "ON" after the addition of ctDNA which brought the restoration of CdTe QDs fluorescence intensity, since ruthenium anticancer drugs broke away from the surface of CdTe QDs and inserted into double helix structure of ctDNA. The fluorescence quenching effect of the CdTe QDs-ruthenium anticancer drugs systems was mainly concentration dependent, which could be used to detect three ruthenium anticancer drugs. The limits of detection were 5.5 × 10(-8) M for ruthenium anticancer drug 1, 7.0 × 10(-8) M for ruthenium anticancer drug 2, and 7.9× 10(-8) M for ruthenium anticancer drug 3, respectively. The relative restored fluorescence intensity was directly proportional to the concentration of ctDNA in the range of 1.0 × 10(-8) M ∼ 3.0 × 10(-7) M, with a correlation coefficient (R) of 0.9983 and a limit of detection of 1.1 × 10(-9) M. The relative standard deviation (RSD) for 1.5 × 10(-7) M ctDNA was 1.5% (n = 5). There was almost no interference to some common chemical compounds, nucleotides, amino acids, and proteins. The proposed method was applied to the determination of ctDNA in three synthetic samples with satisfactory results. The possible reaction mechanism of CdTe QDs fluorescence "OFF-ON" was further investigated. This simple and sensitive approach possessed some potential applications in the investigation of interaction between drug molecules and DNA.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app