Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Dual-layered nanogel-coated hollow lipid/polypeptide conjugate assemblies for potential pH-triggered intracellular drug release.

To achieve effective intracellular anticancer drug delivery, the polymeric vesicles supplemented with the pH-responsive outlayered gels as a delivery system of doxorubicin (DOX) were developed from self-assembly of the lipid/polypeptide adduct, distearin grafted poly(γ-glutamic acid) (poly(γ-GA)), followed by sequential deposition of chitosan and poly(γ-GA-co-γ-glutamyl oxysuccinimide)-g-monomethoxy poly(ethylene glycol) in combination with in situ covalent cross-linking on assembly surfaces. The resultant gel-caged polymeric vesicles (GCPVs) showed superior performance in regulating drug release in response to the external pH change. Under typical physiological conditions (pH 7.4 and 37 °C) at which the γ-GA/DOX ionic pairings remained mostly undisturbed, the dense outlayered gels of GCPVs significantly reduced the premature leakage of the uncomplexed payload. With the environmental pH being reduced from pH 7.4 to 4.7, the drug liberation was appreciably promoted by the massive disruption of the ionic γ-GA/DOX complexes along with the significant swelling of nanogel layers upon the increased protonation of chitosan chain segments. After being internalized by HeLa cells via endocytosis, GCPVs exhibited cytotoxic effect comparable to free DOX achieved by rapidly releasing the payload in intracellular acidic endosomes and lysosomes. This strongly implies the great promise of such unique GCPVs as an intracellular drug delivery carrier for potential anticancer treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app