JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Scaling relations and optimization of excitonic energy transfer rates between one-dimensional molecular aggregates.

We theoretically study the distance, chain length, and temperature dependence of the electronic couplings as well as the excitonic energy transfer rates between one-dimensional (1D) chromophore aggregates. In addition to the well-known geometry dependent factor that leads to the deviation from Förster’s classic R(DA)(–6) scaling on the donor–acceptor separation, nonmonotonic dependence on aggregate size and the breakdown of far-field dipole selection rules are also investigated in detail and compared to prior calculations. Our analysis provides a simple, unifying framework to bridge the results of the ground state electronic couplings at low temperatures and those from the classical rate-summation at high temperatures. At low temperatures and in the near-field limit, the exciton transfer integral scales as R(DA)(–1), in analogy to that of electric monopoles. For the case of aligned 1D J-aggregates, we predict a maximal excitonic energy transfer rate at temperatures on the order of the intra-aggregate coupling strength.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app