Add like
Add dislike
Add to saved papers

Covalent surface modification of chemically derived graphene and its application as supercapacitor electrode material.

A simple and effective method using 6-amino-4-hydroxy-2-naphthalenesulfonic acid (ANS) for the synthesis of water dispersible graphene has been described. Ultraviolet-visible (UV-vis) spectroscopy reveals that ANS-modified reduced graphene oxide (ANS-rGO) obeys Beers law at moderate concentrations. Fourier transform infrared and X-ray photoelectron spectroscopies provide quantitative information regarding the removal of oxygen functional groups from graphene oxide (GO) and the appearance of new functionalities in ANS-rGO. The electrochemical performances of ANS-rGO have been determined by cyclic voltammetry, charge-discharge and electrochemical impedance spectroscopy analysis. Charge-discharge experiments show that ANS-rGO is an outstanding supercapacitor electrode material due to its high specific capacitance (375 F g(-1) at a current density of 1.3 A g(-1)) and very good electrochemical cyclic stability (∼97.5% retention in specific capacitance after 1000 charge-discharge cycles). ANS-rGO exhibits promising characteristics with a very high power density (1328 W kg(-1)) and energy density (213 W h kg(-1)).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app