Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Simple, green and high-yield production of single- or few-layer graphene by hydrothermal exfoliation of graphite.

Nanoscale 2014 May 8
Graphene is widely used as promising electronic material and devices, owing to its exceptional electronic and optoelectronic properties. Up to now, defect-free graphene has been limited to the method for controllable, reproducible and scalable mass production. A simple, green, and nontoxic approach for large-scale preparation of high quality graphene is produced by exfoliation of graphite sheets collaborated with intercalant (FeCl2) under hydrothermal conditions, the absence of defects or oxides in graphene with a yield up to 10 wt% can be a practical application and industrial process such as optical limiters, transparent conductors, and sensors. This new process could potentially be improved to give a yield of up to 35 wt% of the starting graphite mass with sediment recycling. We show with experiments and theories that exfoliation graphene is the result of a combined action by diminishing the van der Waals interactions between graphite layers and the shear force drove by the Brownian motion of H2O and FeCl2 molecules. Hydrothermal exfoliation has potential applications in the exfoliation of other layered materials (e.g. BN, MoS2) and carbon nantubes, and in the synthesis of intercalation compounds, nanoribbons, and nanoparticles, thus opening new ways of exfoliation engineering.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app