JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Endothelial NLRP3 inflammasome activation and enhanced neointima formation in mice by adipokine visfatin.

Inflammasomes serve as an intracellular machinery to initiate inflammatory response to various danger signals. The present study tested whether an inflammasome centered on nucleotide oligomerization domain-like receptor protein 3 (NLRP3) triggers endothelial inflammatory response to adipokine visfatin, a major injurious adipokine during obesity. NLRP3 inflammasome components were abundantly expressed in cultured mouse microvascular endothelial cells, including NLRP3, apoptosis-associated speck-like protein, and caspase-1. These NLRP3 inflammasome molecules could be aggregated to form an inflammasome complex on stimulation of visfatin, as shown by fluorescence confocal microscopy and size exclusion chromatography. Correspondingly, visfatin significantly increased caspase-1 activity and IL-1β release in microvascular endothelial cells, indicating an activation of NLRP3 inflammasomes. In animal experiments, direct infusion of visfatin in mice with partially ligated left carotid artery were found to have significantly increased neointimal formation, which was correlated with increased NLRP3 inflammasome formation and IL-1β production in the intima. Further, visfatin-induced neointimal formation, endothelial inflammasome formation, and IL-1β production in mouse partially ligated left carotid artery were abolished by caspase-1 inhibition, local delivery of apoptosis-associated speck-like protein shRNA or deletion of the ASC gene. In conclusion, the formation and activation of NLRP3 inflammasomes by adipokine visfatin may be an important initiating mechanism to turn on the endothelial inflammatory response leading to arterial inflammation and endothelial dysfunction in mice during early stage obesity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app