JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Theranostic unimolecular micelles based on brush-shaped amphiphilic block copolymers for tumor-targeted drug delivery and positron emission tomography imaging.

Brush-shaped amphiphilic block copolymers were conjugated with a monoclonal antibody against CD105 (i.e., TRC105) and a macrocyclic chelator for (64)Cu-labeling to generate multifunctional theranostic unimolecular micelles. The backbone of the brush-shaped amphiphilic block copolymer was poly(2-hydroxyethyl methacrylate) (PHEMA) and the side chains were poly(L-lactide)-poly(ethylene glycol) (PLLA-PEG). The doxorubicin (DOX)-loaded unimolecular micelles showed a pH-dependent drug release profile and a uniform size distribution. A significantly higher cellular uptake of TRC105-conjugated micelles was observed in CD105-positive human umbilical vein endothelial cells (HUVEC) than nontargeted micelles due to CD105-mediated endocytosis. In contrast, similar and extremely low cellular uptake of both targeted and nontargeted micelles was observed in MCF-7 human breast cancer cells (CD105-negative). The difference between the in vivo tumor accumulation of (64)Cu-labeled TRC105-conjugated micelles and that of nontargeted micelles was studied in 4T1 murine breast tumor-bearing mice, by serial positron emission tomography (PET) imaging and validated by biodistribution studies. These multifunctional unimolecular micelles offer pH-responsive drug release, noninvasive PET imaging capability, together with both passive and active tumor-targeting abilities, thus making them a desirable nanoplatform for cancer theranostics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app