JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Si nanowire directly grown on a liquid metal substrate--towards wafer scale transferable nanowire arrays with improved visible-light sterilization.

Nanotechnology 2014 April 12
Integrating vertically aligned nanowires (NWs) on a functional substrate is important for the application of NWs in wafer scale assemblies and functional devices. However, vertically aligned NWs via the current epitaxial growth route can only be prepared on crystalline wafers. A convenient method is thus presented to overcome NW substrate limitations. Liquid metal is proposed to serve as a substrate for the initial growth of vertically aligned NWs. NWs could then be harvested from the growth substrate and integrated with functional substrates. Fabricated vertically aligned silicon NWs (SiNWs) were grown on molten Sn and then integrated into a flexible transparent poly(dimethylsiloxane) film to obtain a SiNW/functional substrate device. The device showed enhanced visible-light absorption ability and refreshable visible-light bactericidal activities with a bacterial reduction rate of close to 100%, indicating that growth with molten metal as a substrate could be a promising approach for extending the function and application of NWs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app