JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

In vivo visualization of MET tumor expression and anticalin biodistribution with the MET-specific anticalin 89Zr-PRS-110 PET tracer.

UNLABELLED: Anticalins are a novel class of biopharmaceuticals, displaying highly desirable attributes as imaging agents. The anticalin PRS-110 was rationally engineered to target the oncogene MET with high affinity and specificity. The aim of this study was to visualize MET expression and analyze biodistribution of (89)Zr-labeled PRS-110 in human tumor-bearing mice.

METHODS: (89)Zr-PRS-110 was generated. For biodistribution studies (96 h after injection of tracer) 10 μg of (89)Zr-PRS-110 (with 0-490 μg of unlabeled PRS-110) were injected into BALB/c mice bearing high MET-expressing H441 non-small cell lung cancer xenografts. Further characterization with PET imaging was performed at 6, 24, 48, and 96 h after injection of 50 μg of (89)Zr-PRS-110 into mice bearing H441, primary glioblastoma U87-MG (intermediate MET), or ovarian cancer A2780 (low MET) xenografts. Drug distribution was also analyzed ex vivo using fluorescently labeled PRS-110.

RESULTS: Biodistribution analyses showed a dose-dependent tumor uptake of (89)Zr-PRS-110, with the highest fractional tumor uptake at 10 μg of (89)Zr-PRS-110, with no unlabeled PRS-110. Small-animal PET imaging supported by biodistribution data revealed specific tumor uptake of (89)Zr-PRS-110 in the MET-expressing H441 and U87-MG tumors whereas the MET-negative A2780 tumor model showed a lower uptake similar to a non-MET binder anticalin control. Tumor uptake increased up to 24 h after tracer injection and remained high, whereas uptake in other organs decreased over time. Ex vivo fluorescence revealed intracellular presence of PRS-110.

CONCLUSION: (89)Zr-PRS-110 specifically accumulates in MET-expressing tumors in a receptor density-dependent manner. PET imaging provides real-time noninvasive information about PRS-110 distribution and tumor accumulation in preclinical models.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app