MENU ▼
Read by QxMD icon Read
search
OPEN IN READ APP
JOURNAL ARTICLE

Exciton delocalization, charge transfer, and electronic coupling for singlet excitation energy transfer between stacked nucleobases in DNA: an MS-CASPT2 study

Lluís Blancafort, Alexander A Voityuk
Journal of Chemical Physics 2014 March 7, 140 (9): 095102
24606381
Exciton delocalization and singlet excitation energy transfer have been systematically studied for the complete set of 16 DNA nucleobase dimers in their ideal, single-strand stacked B-DNA conformation, at the MS-CASPT2 level of theory. The extent of exciton delocalization in the two lowest (π,π(*)) states of the dimers is determined using the symmetrized one-electron transition density matrices between the ground and excited states, and the electronic coupling is calculated using the delocalization measure and the energy splitting between the states [see F. Plasser, A. J. A. Aquino, W. L. Hase, and H. Lischka, J. Phys. Chem. A 116, 11151-11160 (2012)]. The calculated couplings lie between 0.05 eV and 0.14 eV. In the B-DNA conformation, where the interchromophoric distance is 3.38 Å, our couplings deviate significantly from those calculated with the transition charges, showing the importance of orbital overlap components for the couplings in this conformation. The calculation of the couplings is based on a two-state model for exciton delocalization. However, in three stacks with a purine in the 5(') position and a pyrimidine in the 3(') one (AT, GC, and GT), there is an energetically favored charge transfer state that mixes with the two lowest excited states. In these dimers we have applied a three-state model that considers the two locally excited diabatic states and the charge transfer state. Using the delocalization and charge transfer descriptors, we obtain all couplings between these three states. Our results are important in the context of DNA photophysics, since the calculated couplings can be used to parametrize effective Hamiltonians to model extended DNA stacks. Our calculations also suggest that the 5(')-purine-pyrimidine-3(') sequence favors the formation of charge transfer excited states.

Comments

You need to log in or sign up for an account to be able to comment.

No comments yet, be the first to post one!

Related Papers

Available on the App Store

Available on the Play Store
Remove bar
Read by QxMD icon Read
24606381
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"