JOURNAL ARTICLE

Efficient oxygen reduction electrocatalyst based on edge-nitrogen-rich graphene nanoplatelets: toward a large-scale synthesis

Xiaogang Fu, Jutao Jin, Yanru Liu, Zhiyang Wei, Fuping Pan, Junyan Zhang
ACS Applied Materials & Interfaces 2014 March 26, 6 (6): 3930-6
24598249
The large-scale synthesis of nitrogen doped graphene (N-graphene) with high oxygen reduction reaction (ORR) performance has received a lot of attention recently. In this work, we have developed a facile and economical procedure for mass production of edge-nitrogen-rich graphene nanoplatelets (ENR-GNPs) by a combined process of ball milling of graphite powder (GP) in the presence of melamine and subsequent heat treatment. It is found that the ball milling process can not only crack and exfoliate pristine GP into edge-expanded nanoplatelets but also mechanically activate GP to generate appropriate locations for N-doping. Analysis results indicate that the doped N atoms mainly locate on the edge of the graphitic matrix, which contains ca. 3.1 at.% nitrogen content and can be well-dispersed in aqueous to form multilayer nanoplatelets. The as-prepared ENR-GNPs electrocatalyst exhibits highly electrocatalytic activity for ORR due to the synergetic effects of edge-N-doping and nanosized platelets. Besides, the stability and methanol tolerance of ENR-GNPs are superior to that of the commercial Pt/C catalyst, which makes the nanoplatelets a promising candidate for fuel cell cathode catalysts. The present approach opens up the possibility for simple and mass production of N-graphene based electrocatalysts in practice.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
24598249
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"