Add like
Add dislike
Add to saved papers

Live multicellular tumor spheroid models for high-content imaging and screening in cancer drug discovery.

The multi cellular tumor spheroid (MCTS) model has been used for decades with proven superiority over monolayer cell culture models at recapitulating in vivo tumor growth. Yet its use in high-throughput drug discovery has been limited, particularly with image based screening, due to practical and technical hurdles. Here we report a significant advance in utilizing live MCTS models for high-content image based drug discovery. Using a validated GFP reporter (CK5Pro-GFP) of luminal breast cancer stem cells (CSC), we developed an algorithm to quantify changes in CK5Pro-GFP expression levels for individual Z-stack planes (local) or as maximal projections of the summed Z-stacks (global) of MCTS. From these image sets, we can quantify the cross-sectional area of GFP positive cells, the fluorescence intensity of the GFP positive cells, and the percent of spheroid cross-sectional area that expresses CK5Pro-GFP.We demonstrate that acquiring data in this manner can be done in real time and is statistically robust (Z'=0.85) for use in primary high-content screening cancer drug discovery.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app