Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Consensus HIV-1 subtype A integrase and its raltegravir-resistant variants: design and characterization of the enzymatic properties.

Biochimie 2014 July
Model studies of the subtype B and non-subtype B integrases are still required to compare their susceptibility to antiretroviral drugs, evaluate the significance of resistance mutations and identify the impact of natural polymorphisms on the level of enzymatic reactivity. We have therefore designed the consensus integrase of the HIV-1 subtype A strain circulating in the former Soviet Union territory (FSU-A) and two of its variants with mutations of resistance to the strand transfer inhibitor raltegravir. Their genes were synthesized, and expressed in E coli; corresponding His-tagged proteins were purified using the affinity chromatography. The enzymatic properties of the consensus integrases and their sensitivity to raltegravir were examined in a series of standard in vitro reactions and compared to the properties of the integrase of HIV-1 subtype B strain HXB2. The consensus enzyme demonstrated similar DNA-binding properties, but was significantly more active than HXB-2 integrase in the reactions of DNA cleavage and integration. All integrases were equally susceptible to inhibition by raltegravir and elvitegravir, indicating that the sporadic polymorphisms inherent to the HXB-2 enzyme have little effect on its susceptibility to drugs. Insensitivity of the mutated enzymes to the inhibitors of strand transfer occurred at a cost of a 30-90% loss of the efficacies of both 3'-processing and strand transfer. This is the first study to describe the enzymatic properties of the consensus integrase of HIV-1 clade A and the effects of the resistance mutations when the complex actions of sporadic sequence polymorphisms are excluded.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app