JOURNAL ARTICLE
OBSERVATIONAL STUDY
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Targeted metabolomics identifies reliable and stable metabolites in human serum and plasma samples.

BACKGROUND: Information regarding the variability of metabolite levels over time in an individual is required to estimate the reproducibility of metabolite measurements. In intervention studies, it is critical to appropriately judge changes that are elicited by any kind of intervention. The pre-analytic phase (collection, transport and sample processing) is a particularly important component of data quality in multi-center studies.

METHODS: Reliability of metabolites (within-and between-person variance, intraclass correlation coefficient) and stability (shipment simulation at different temperatures, use of gel-barrier collection tubes, freeze-thaw cycles) were analyzed in fasting serum and plasma samples of 22 healthy human subjects using a targeted LC-MS approach.

RESULTS: Reliability of metabolite measurements was higher in serum compared to plasma samples and was good in most saturated short-and medium-chain acylcarnitines, amino acids, biogenic amines, glycerophospholipids, sphingolipids and hexose. The majority of metabolites were stable for 24 h on cool packs and at room temperature in non-centrifuged tubes. Plasma and serum metabolite stability showed good coherence. Serum metabolite concentrations were mostly unaffected by tube type and one or two freeze-thaw cycles.

CONCLUSION: A single time point measurement is assumed to be sufficient for a targeted metabolomics analysis of most metabolites. For shipment, samples should ideally be separated and frozen immediately after collection, as some amino acids and biogenic amines become unstable within 3 h on cool packs. Serum gel-barrier tubes can be used safely for this process as they have no effect on concentration in most metabolites. Shipment of non-centrifuged samples on cool packs is a cost-efficient alternative for most metabolites.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app