Blood pressure lowering efficacy of nonselective beta-blockers for primary hypertension

Gavin W K Wong, James M Wright
Cochrane Database of Systematic Reviews 2014, (2): CD007452

BACKGROUND: Beta-blockers are one of the classes of drugs frequently used to treat hypertension. Quantifying the blood pressure (BP) lowering effects of nonselective beta-blockers provides important information that aids clinical decision making.

OBJECTIVES: To quantify the dose-related effects of nonselective beta-adrenergic receptor blockers (beta-blockers) on systolic blood pressure (SBP) and diastolic blood pressure (DBP) as compared with placebo in people with primary hypertension.

SEARCH METHODS: We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE and for randomized controlled trials up to October 2013.

SELECTION CRITERIA: Randomized, double-blind, placebo-controlled, parallel or cross-over trials. Studies had to contain a nonselective beta-blocker monotherapy arm with a fixed dose. Participants enrolled into the studies had to have primary hypertension at baseline. Duration of studies had to be between three and 12 weeks.

DATA COLLECTION AND ANALYSIS: Two review authors (GW and AL) independently confirmed the inclusion of studies and extracted the data.

MAIN RESULTS: We included 25 RCTs that evaluated the BP lowering effects of seven nonselective beta-blockers in 1264 people with hypertension. Among the 25 RCTs, four were parallel studies and 21 were cross-over studies. Overall, nonselective beta-blockers lowered systolic BP and diastolic BP compared with placebo. Nonselective beta-blockers, in the recommended dose range, did not showed a convincing dose-response relationship by direct comparison. The once (1x) and twice (2x) starting dose subgroups contained the largest sample size. The estimate of BP lowering efficacy for nonselective beta-blockers by combining the 1x and 2x starting dose subgroup was -10 mmHg (95% CI -11 to -8) for systolic BP and -7 mmHg (95% CI -8 to -6) for diastolic BP (low-quality evidence). Nonselective beta-blockers starting at the 1x recommended starting doses lowered heart rate by 12 beats per minute (95% CI 10 to 13) (low-quality evidence). The dose-response relationship in heart rate was evident by both direct and indirect comparison. Due to imprecision, there was no clear evidence of an effect of nonselective beta-blockers on pulse pressure in any dose subgroups except for a small reduction with the 2x starting dose (-2.2 mmHg, 95% CI -3.7 to -0.7) (very low quality evidence). The point estimates in the 1x, four times (4x) and eight times (8x) starting dose subgroups were similar to the 2x starting dose subgroup. Therefore, it would appear that if nonselective beta-blockers do lower pulse pressure, the magnitude is likely to be about 2 mmHg. There were very limited data (two studies) on withdrawals due to adverse effects (risk ratio (RR) 0.84; 95% CI 0.38 to 1.82).

AUTHORS' CONCLUSIONS: In people with mild-to-moderate hypertension, nonselective beta-blockers lowered peak BP by a mean of -10/-7 mmHg (systolic/diastolic) and reduced heart rate by 12 beats per minute. Propranolol and penbutolol were the two drugs that contributed to most of the data for nonselective beta-blockers. This estimate is likely exaggerated due to the presence of extreme outliers and other sources of bias. If we removed the extreme outliers from the analysis, the estimate for non-selective beta-blockers was lower (-8/-5 mmHg (systolic/diastolic)). Nonselective beta-blockers did not show a convincing graded dose-response in the recommended dose range for systolic BP and diastolic BP, while higher dose nonselective beta-blockers provided greater reduction of heart rate. Using higher dose nonselective beta-blockers might cause more side effects, such as bradycardia, without producing an additional BP lowering effect. The effect of nonselective beta-blockers on pulse pressure was likely small, at about 2 mmHg.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"