JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Thymoquinone, a bioactive component of black caraway seeds, causes G1 phase cell cycle arrest and apoptosis in triple-negative breast cancer cells with mutant p53.

Thymoquinone (TQ) from black caraway seeds has several anticancer activities; however, its effect on triple-negative breast cancer (TNBC) cells that lack functional tumor suppressor p53 is not known. Here, we explored the growth inhibitory effect of TQ on 2 TNBC cell lines with mutant p53. Cell metabolism assays showed that TQ inhibited TNBC cell growth without affecting normal cell growth. Flow cytometric analyses of TQ-treated TNBC cells showed G1 phase cell cycle arrest and apoptosis characterized by the loss of mitochondrial membrane integrity. Western blots of lysates from TQ-treated TNBC cells showed cytochrome c and apoptosis-inducing factor in the cytoplasm, as well as caspase-9 activation consistent with the mitochondrial pathway of apoptosis. Caspase-8 was also activated in TQ-treated TNBC cells, although the mechanism of activation is not clear at this time. Importantly, TQ-induced apoptosis was only partially inhibited by zVAD-fmk, indicating a role for caspase-independent effector molecules. Poly(ADP-ribose) polymerase cleavage and increased γH2AX, as well as reduced Akt phosphorylation and decreased expression of X-linked inhibitor of apoptosis, were evident in TQ-treated cells. Finally, TQ enhanced cisplatin- and docetaxel-induced cytotoxicity. These findings suggest that TQ could be useful in the management of TNBC, even when functional p53 is absent.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app