JOURNAL ARTICLE

Tonic inhibition by G protein-coupled receptor kinase 2 of Akt/endothelial nitric-oxide synthase signaling in human vascular endothelial cells under conditions of hyperglycemia with high insulin levels

Kumiko Taguchi, Kimimasa Sakata, Wakana Ohashi, Takahiro Imaizumi, Joji Imura, Yuichi Hattori
Journal of Pharmacology and Experimental Therapeutics 2014, 349 (2): 199-208
24570070
G protein-coupled receptor kinase 2 (GRK2) participates together with β-arrestins in the regulation of G protein-coupled receptor signaling, but emerging evidence suggests that GRK2 can interact with a growing number of proteins involved in signaling mediated by other membrane receptor families under various pathologic conditions. We tested the hypothesis that GRK2 may be an important contributor to vascular endothelial dysfunction in diabetes. Human umbilical venous endothelial cells (HUVECs) were exposed to high glucose and high insulin (HG/HI) to mimic insulin-resistant diabetic conditions. GRK2 expression and membrane translocation were up-regulated under HG/HI conditions. HG/HI did not modify activation of Akt or endothelial nitric-oxide synthase (eNOS), but GRK2 inhibitor or small interfering RNA (siRNA) resulted in an increase in Akt and eNOS activation in HUVECs exposed to HG/HI. Extracellular signal-regulated kinase 1/2 (ERK1/2) activation was increased after exposure to HG/HI, which was prevented by GRK2 inhibitor or siRNA. ERK1/2-mediated GRK2 phosphorylation at Ser-670 confirmed that ERK1/2 participated in a negative feedback regulatory loop. In human embryonic kidney 293T cells that overexpressed GRK2, Akt activity was unchanged, whereas ERK1/2 activity was raised. The effect of GRK inhibitor treatment on Akt/eNOS signaling was associated with membrane translocation of β-arrestin 2. The experiments with β-arrestin 2 siRNA showed that β-arrestin 2 may act as a positive modulator of Akt/eNOS signaling. Our studies reveal that GRK2, which is up-regulated by HG/HI, leads to a tonic inhibition of the insulin Akt/eNOS pathway in endothelial cells. We provide new insights into the pathogenesis of diabetes-associated vascular endothelial dysfunction.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
24570070
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"