Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Local inhibition of hypoxia-inducible factor reduces neointima formation after arterial injury in ApoE-/- mice.

Atherosclerosis 2014 April
OBJECTIVE: Hypoxia plays a pivotal role in development and progression of restenosis after vascular injury. Under hypoxic conditions the hypoxia-inducible factors (HIFs) are the most important transcription factors for the adaption to reduced oxygen supply. Therefore the aim of the study was to investigate the effect of a local HIF-inhibition and overexpression on atherosclerotic plaque development in a murine vascular injury model.

METHODS AND RESULTS: After wire-induced vascular injury in ApoE-/- mice a transient, local inhibition of HIF as well as an overexpression approach of the different HIF-subunits (HIF-1α, HIF-2α) by adenoviral infection was performed. The local inhibition of the HIF-pathway using a dominant-negative mutant dramatically reduced the extent of neointima formation. The diminished plaque size was associated with decreased expression of the well-known HIF-target genes vascular endothelial growth factor-A (VEGF-A) and its receptors Flt-1 and Flk-1. In contrast, the local overexpression of HIF-1α and HIF-2α further increased the plaque size after wire-induced vascular injury.

CONCLUSIONS: Local HIF-inhibition decreases and HIF-α overexpression increases the injury induced neointima formation. These findings provide new insight into the pathogenesis of atherosclerosis and may lead to new therapeutic options for the treatment of in stent restenosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app