JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Hypocapnia leads to enhanced expression of pluripotency and meso-endodermal differentiation genes in mouse embryonic stem cells.

The efficient utilization of embryonic stem cells for applications like cell based therapy, transplantation and drug discovery largely depends upon the culturing conditions of these cells. In this report, we have analyzed gene, protein expression and morphological changes of embryonic stem cells when subjected to lowered CO2 levels i.e. hypocapnia. We studied the quantitative expression of pluripotent genes, Oct3/4, Nanog and Sox2 and genes involved in the differentiation to the three lineages, under varying CO2 levels. Enhanced expression of these genes was seen at cultures maintained at 1.5% CO2 as compared to those maintained at 5% CO2. The cells exposed to hypocapnic conditions when subjected to immunocytochemical analysis stained positive for Oct-3/4, Nanog and Sox2 transcription factors. Flow cytometry and western blot further showed that the pluripotent proteins in the 1.5% CO2 maintained cultures have higher levels of expression as compared to the ES cells at 5% CO2. In addition, there was enhanced differentiation particularly towards the mesodermal and endodermal lineages at cultures maintained and differentiated at 1.5% CO2 at all the time periods analyzed i.e. day 10 (5+5d), 12 (5+7d) and day 15 (5+10d). These results, which we feel are the first of their kind, indicate that lowered CO2 levels seem to be preferred for the maintenance of pluripotency and the subsequent differentiation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app