Journal Article
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

Helfrich model of membrane bending: from Gibbs theory of liquid interfaces to membranes as thick anisotropic elastic layers.

Helfrich model of membrane bending elasticity has been most influential in establishment and development of Soft-Matter Physics of lipid bilayers and biological membranes. Recently, Helfrich theory has been extensively used in Cell Biology to understand the phenomena of shaping, fusion and fission of cellular membranes. The general background of Helfrich theory on the one hand, and the ways of specifying the model parameters on the other, are important for quantitative treatment of particular biologically relevant membrane phenomena. Here we present the origin of Helfrich model within the context of the general Gibbs theory of capillary interfaces, and review the strategies of computing the membrane elastic moduli based on considering a lipid monolayer as a three-dimensional thick layer characterized by trans-monolayer profiles of elastic parameters. We present the results of original computations of these profiles by a state-of-the-art numerical approach.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app