JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Polycyclic aromatic hydrocarbons-associated microRNAs and their interactions with the environment: influences on oxidative DNA damage and lipid peroxidation in coke oven workers.

We previously identified five polycyclic aromatic hydrocarbons (PAHs)-associated microRNAs (miRNAs) and found they were associated with chromosome damage. As oxidative damage is the common contributory cause of various PAHs-related diseases, we further investigated the influences of these miRNAs and their interactions with environmental factors on oxidative DNA damage and lipid peroxidation. We measured PAHs internal exposure biomarkers [urinary monohydroxy-PAHs (OH-PAHs) and plasma benzo[a]pyrene-r-7,t-8,t-9,c-10-tetrahydotetrol-albumin (BPDE-Alb) adducts], the expression levels of PAHs-associated plasma miRNAs (miR-24-3p, miR-27a-3p, miR-142-5p, miR-28-5p, and miR-150-5p), and urinary biomarkers of oxidative DNA damage [8-hydroxydeoxyguanosine (8-OH-dG)] and lipid peroxidation [8-iso-prostaglandin-F2α (8-iso-PGF2α)] in 365 healthy male coke oven workers. These miRNAs were associated with a dose-response increase in 8-OH-dG (β > 0), and with a dose-response decrease in 8-iso-PGF2α (β < 0), especially in workers with lower PAHs exposure levels, in nonsmokers, and in nondrinkers. These miRNAs interacted antagonistically with ΣOH-PAHs and BPDE-Alb adducts (βinteraction < 0) and synergistically with drinking status (βinteraction > 0) to influence 8-OH-dG, while they interacted synergistically with BPDE-Alb adducts (βinteraction > 0) and antagonistically with smoking status (βinteraction < 0) to influence 8-iso-PGF2α. Our results suggested that miRNAs and their interactions with environmental factors might be novel mechanisms mediating the effects of PAHs exposure on oxidative DNA damage and lipid peroxidation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app