JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Characterization and biodegradation kinetics of a new cold-adapted carbamazepine-degrading bacterium, Pseudomonas sp. CBZ-4.

Carbamazepine is frequently detected in waters and hardly eliminated during conventional wastewater treatment processes due to its complicated chemical structure and resistance to biodegradation. A carbamazepine-degrading bacterium named CBZ-4 was isolated at a low temperature (10 degreeC) from activated sludge in a municipal wastewater treatment plant. Strain CBZ-4, which can use carbamazepine as its sole source of carbon and energy, was identified as Pseudomonas sp. by the 16S rRNA gene sequence. The composition and percentage of fatty acids, which can reveal the cold-adaptation mechanism of strain CBZ-4, were determined. Strain CBZ-4 can effectively degrade carbamazepine at optimal conditions: pH 7.0, 10 degreeC, 150 r/min rotation speed, and 13% inoculation volume. The average removal rate of carbamazepine was 46.6% after 144 hr of incubation. The biodegradation kinetics of carbamazepine by CBZ-4 was fitted via the Monod model. Vmax and Ks were found to be 0.0094 hr-1 and 32.5 mg/L, respectively.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app