Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Eph-Ephrin signaling and focal adhesion kinase regulate actomyosin-dependent apical constriction of ciliary band cells.

Development 2014 March
Apical constriction typically accompanies inward folding of an epithelial sheet. In recent years there has been progress in understanding mechanisms of apical constriction and their contribution to morphogenetic processes. Sea urchin embryos form a specialized region of ectoderm, the ciliary band, which is a strip of epithelium, three to five cells wide, encircling the oral ectoderm and functioning in larval swimming and feeding. Ciliary band cells exhibit distinctive apical-basal elongation, have narrow apices bearing a cilium, and are planar polarized, so that cilia beat away from the mouth. Here, we show that filamentous actin and phosphorylated myosin light chain are uniquely distributed in ciliary band cells. Inhibition of myosin phosphorylation or actin polymerization perturbs this distribution and blocks apical constriction. During ciliary band formation, Sp-Ephrin and Sp-Eph expression overlap in the presumptive ciliary band. Knockdown of Sp-Eph or Sp-Ephrin, or treatment with an Eph kinase inhibitor interferes with actomyosin networks, accumulation of phosphorylated FAK (pY(397)FAK), and apical constriction. The cytoplasmic domain of Sp-Eph, fused to GST and containing a single amino acid substitution reported as kinase dead, will pull down pY(397)FAK from embryo lysates. As well, pY(397)FAK colocalizes with Sp-Eph in a JNK-dependent, planar polarized manner on latitudinal apical junctions of the ciliary band and this polarization is dissociable from apical constriction. We propose that Sp-Eph and pY(397)FAK function together in an apical complex that is necessary for remodeling actomyosin to produce centripetal forces causing apical constriction. Morphogenesis of ciliary band cells is a unique example of apical constriction in which receptor-mediated cell shape change produces a strip of specialized tissue without an accompanying folding of epithelium.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app