Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Quantitative trait loci mapping for kernel row number using chromosome segment substitution lines in maize.

Unveiling the genetic architecture of grain yield and yield-related traits is useful for guiding the genetic improvement of crop plants. Kernel row number (KRN) per ear is an important yield component, which directly affects the grain yield of maize. In this study, we constructed a set of 130 chromosome segment substitution lines (CSSLs), using Nongxi531 as the donor parent and H21 as recipient parent, by continuous backcrossing and selfing. In total, 11 quantitative trait loci (QTL) were detected for KRN by stepwise regression under 3 environmental settings, with 9.87-19.44% phenotypic variation being explained by a single QTL. All 11 QTL were also detected by single-factor ANOVA across the 3 environments tested. Of these 11 QTL, 4 were identified across more than 2 environments, indicating that they are authentically expressed under different environments to control the formation and development of KRN in female maize inflorescences. The CSSLs harbored a greater number of favorable alleles for KRN compared to the H21 line, and could be employed as improved H21 lines in maize breeding programs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app