Add like
Add dislike
Add to saved papers

Lower extremity joint stiffness characteristics during running with different footfall patterns.

The purpose of this study was to examine the knee and ankle joint stiffness and negative joint work during running when participants utilised their preferred and non-preferred footfall pattern. A total of 40 healthy, young runners (20 habitual forefoot (FF) and 20 habitual rearfoot (RF) runners) served as participants in this study. Three-dimensional data were obtained using a motion capture system and a force platform. The participants completed over-ground trials in each of two conditions: 1. their natural footfall pattern; and 2. their non-preferred footfall pattern. Joint stiffness was calculated by the ratio of the change in joint moment and the change in joint angle during the energy absorption phase of support. Negative joint work was calculated as the integral of the joint power-time curve during the same time interval. It was observed that joint stiffness was different between the footfall patterns but similar for both groups within a footfall pattern. A stiffer knee and a more compliant ankle were found in the FF pattern and the opposite in the RF pattern. Negative work was greater in the ankle and less in the knee in the FF pattern and the reverse in the RF pattern. We conclude that runners, in the short term, can alter their footfall pattern. However, there is a re-organisation of the control strategy of the joint when changing from a FF to a RF pattern. This re-organisation suggests that there is a possible difference in the types of injuries that may be sustained between the FF and the RF footfall patterns.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app