JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Metabolic engineering of a Saccharomyces cerevisiae strain capable of simultaneously utilizing glucose and galactose to produce enantiopure (2R,3R)-butanediol.

2,3-Butanediol (BDO) is an important chemical with broad industrial applications and can be naturally produced by many bacteria at high levels. However, the pathogenicity of these native producers is a major obstacle for large scale production. Here we report the engineering of an industrially friendly host, Saccharomyces cerevisiae, to produce BDO at high titer and yield. By inactivation of pyruvate decarboxylases (PDCs) followed by overexpression of MTH1 and adaptive evolution, the resultant yeast grew on glucose as the sole carbon source with ethanol production completely eliminated. Moreover, the pdc- strain consumed glucose and galactose simultaneously, which to our knowledge is unprecedented in S. cerevisiae strains. Subsequent introduction of a BDO biosynthetic pathway consisting of the cytosolic acetolactate synthase (cytoILV2), Bacillus subtilis acetolactate decarboxylase (BsAlsD), and the endogenous butanediol dehydrogenase (BDH1) resulted in the production of enantiopure (2R,3R)-butanediol (R-BDO). In shake flask fermentation, a yield over 70% of the theoretical value was achieved. Using fed-batch fermentation, more than 100g/L R-BDO (1100mM) was synthesized from a mixture of glucose and galactose, two major carbohydrate components in red algae. The high titer and yield of the enantiopure R-BDO produced as well as the ability to co-ferment glucose and galactose make our engineered yeast strain a superior host for cost-effective production of bio-based BDO from renewable resources.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app