Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

1,25(OH)2 vitamin D3-dependent inhibition of platelet Ca2+ signaling and thrombus formation in klotho-deficient mice.

Platelets are activated by increased cytosolic Ca(2+) concentration ([Ca(2+)]i) following store-operated calcium entry (SOCE) accomplished by calcium-release-activated calcium (CRAC) channel moiety Orai1 and its regulator STIM1. In other cells, Ca(2+) transport is regulated by 1,25(OH)2 vitamin D3 [1,25(OH)2D3]. 1,25(OH)2D3 formation is inhibited by klotho and excessive in klotho-deficient mice (kl/kl). The present study explored the effect of klotho deficiency on platelet Ca(2+) signaling and activation. Platelets and megakaryocytes isolated from WT and kl/kl-mice were analyzed by RT-PCR, Western blotting, confocal microscopy, Fura-2-fluorescence, patch clamp, flow cytometry, aggregometry, and flow chamber. STIM1/Orai1 transcript and protein levels, SOCE, agonist-induced [Ca(2+)]i increase, activation-dependent degranulation, integrin αIIbβ3 activation and aggregation, and thrombus formation were significantly blunted in kl/kl platelets (by 27-90%). STIM1/Orai1 transcript and protein levels, as well as CRAC currents, were significantly reduced in kl/kl megakaryocytes (by 38-73%) and 1,25(OH)2D3-treated WT megakaryocytes. Nuclear NF-κB subunit p50/p65 abundance was significantly reduced in kl/kl-megakaryocytes (by 51-76%). Transfection with p50/p65 significantly increased STIM1/Orai1 transcript and protein levels in megakaryocytic MEG-01 cells (by 46-97%). Low-vitamin D diet (LVD) of kl/kl mice normalized plasma 1,25(OH)2D3 concentration and function of platelets and megakaryocytes. Klotho deficiency inhibits platelet Ca(2+) signaling and activation, an effect at least partially due to 1,25(OH)2D3-dependent down-regulation of NF-κB activity and STIM1/Orai1 expression in megakaryocytes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app