JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

The cardioprotectant 3',4'-dihydroxyflavonol inhibits opening of the mitochondrial permeability transition pore after myocardial ischemia and reperfusion in rats.

The study aimed to determine the effect of 3',4'-dihydroxyflavonol (DiOHF) on mitochondrial function, in particular opening of the mitochondrial permeability transition pore (mPTP), respiratory function and reactive oxygen species (ROS) production, in isolated cardiac mitochondria after coronary artery occlusion and reperfusion in vivo. Opening of the mPTP, oxygen consumption and ROS production (assessed by measurement of H2O2) was determined in mitochondria isolated from normal hearts or from the ischemic zone of rat hearts subjected to 30min coronary artery occlusion and 15min reperfusion. Treatment of sham rats with DiOHF (10mgkg(-1) iv) significantly increased the concentration of Ca(2+) required to stimulate mPTP opening. This was accompanied by increased state 3 oxygen consumption and decreased H2O2 release. Ischemia and reperfusion (IR) significantly decreased the concentration of Ca(2+) required to stimulate mPTP opening, decreased state 3 oxygen consumption and increased H2O2 release, when pyruvate plus malate was provided as a substrate. Treatment with DiOHF prevented IR-induced changes in mPTP opening, state 3 oxygen consumption and H2O2 release so that there was no difference compared to sham. In isolated cardiac mitochondria from normal rats DiOHF had no effect on mPTP opening or on state 3 respiration but caused a small increase in state 4 respiration and decreased the respiratory control ratio. DiOHF, administered during ischemia just before reperfusion, inhibits mPTP opening and preserves mitochondrial function through a mechanism likely to be independent of its antioxidant activity or any direct effect on the mPTP.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app