Add like
Add dislike
Add to saved papers

Field emission characteristics of zinc oxide nanowires synthesized by vapor-solid process.

Vertically aligned ZnO nanowire (NW) arrays have been synthesized on silicon substrates by chemical vapor deposition. The growth of ZnO NWs may be dominated by vapor-solid nucleation mechanism. Morphological, structural, optical, and field emission characteristics can be modified by varying the growth time. For growth time that reaches 120 min, the length and diameter of ZnO NWs are 1.5 μm and 350 nm, respectively, and they also show preferential growth orientation along the c-axis. Room-temperature photoluminescence spectra exhibit a sharp UV emission and broad green emission, and the enhanced UV-to-green emission ratio with increasing growth time might originate from the reduced concentration of surface defects. Furthermore, strong alignment and uniform distribution of ZnO NWs can also effectively enhance the antireflection to reach the average reflectance of 5.7% in the visible region. The field emission measurement indicated that the growth time plays an important role in density- and morphology-controlled ZnO NWs, and thus, ZnO NWs are expected to be used in versatile optoelectronic devices.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app