Comparative Study
Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Does a microprocessor-controlled prosthetic knee affect stair ascent strategies in persons with transfemoral amputation?

BACKGROUND: Stair ascent can be difficult for individuals with transfemoral amputation because of the loss of knee function. Most individuals with transfemoral amputation use either a step-to-step (nonreciprocal, advancing one stair at a time) or skip-step strategy (nonreciprocal, advancing two stairs at a time), rather than a step-over-step (reciprocal) strategy, because step-to-step and skip-step allow the leading intact limb to do the majority of work. A new microprocessor-controlled knee (Ottobock X2(®)) uses flexion/extension resistance to allow step-over-step stair ascent.

QUESTIONS/PURPOSES: We compared self-selected stair ascent strategies between conventional and X2(®) prosthetic knees, examined between-limb differences, and differentiated stair ascent mechanics between X2(®) users and individuals without amputation. We also determined which factors are associated with differences in knee position during initial contact and swing within X2(®) users.

METHODS: Fourteen individuals with transfemoral amputation participated in stair ascent sessions while using conventional and X2(®) knees. Ten individuals without amputation also completed a stair ascent session. Lower-extremity stair ascent joint angles, moment, and powers and ground reaction forces were calculated using inverse dynamics during self-selected strategy and cadence and controlled cadence using a step-over-step strategy.

RESULTS: One individual with amputation self-selected a step-over-step strategy while using a conventional knee, while 10 individuals self-selected a step-over-step strategy while using X2(®) knees. Individuals with amputation used greater prosthetic knee flexion during initial contact (32.5°, p = 0.003) and swing (68.2°, p = 0.001) with higher intersubject variability while using X2(®) knees compared to conventional knees (initial contact: 1.6°, swing: 6.2°). The increased prosthetic knee flexion while using X2(®) knees normalized knee kinematics to individuals without amputation during swing (88.4°, p = 0.179) but not during initial contact (65.7°, p = 0.002). Prosthetic knee flexion during initial contact and swing were positively correlated with prosthetic limb hip power during pull-up (r = 0.641, p = 0.046) and push-up/early swing (r = 0.993, p < 0.001), respectively.

CONCLUSIONS: Participants with transfemoral amputation were more likely to self-select a step-over-step strategy similar to individuals without amputation while using X2(®) knees than conventional prostheses. Additionally, the increased prosthetic knee flexion used with X2(®) knees placed large power demands on the hip during pull-up and push-up/early swing. A modified strategy that uses less knee flexion can be used to allow step-over-step ascent in individuals with less hip strength.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app