COMPARATIVE STUDY
JOURNAL ARTICLE

Comparison of 3 real-time, quantitative murine models of staphylococcal biofilm infection by using in vivo bioluminescent imaging

Kelly D Walton, Allison Lord, Lon V Kendall, Steven W Dow
Comparative Medicine 2014, 64 (1): 25-33
24512958
Biofilm formation represents a unique mechanism by which Staphylococcus aureus and other microorganisms avoid antimicrobial clearance and establish chronic infections. Treatment of these infections can be challenging, because the bacteria in the biofilm state are often resistant to therapies that are effective against planktonic bacteria of the same species. Effective animal models for the study of biofilm infections and novel therapeutics are needed. In addition, there is substantial interest in the use of noninvasive, in vivo data collection techniques to decrease the animal numbers required for the execution of infectious disease studies. To ad- dress these needs, we evaluated 3 murine models of implant-associated biofilm infection by using in vivo bioluminescent imaging techniques. The goal of these studies was to identify the model that was most amenable to development of sustained infections that could be imaged repeatedly in vivo by using bioluminescent technology. We found that the subcutaneous mesh and tibial intramedullary pin models both maintained consistent levels of bioluminescence for as long as 35 d after infection, with no implant loss experienced in either model. In contrast, a subcutaneous catheter model demonstrated significant incidence of incisional ab- scessation and implant loss by day 20 after infection. The correlation of bioluminescent measurements and bacterial enumeration was strongest with the subcutaneous mesh model. Among the 3 models we evaluated, the subcutaneous mesh model is the most appropriate animal model for prolonged study of biofilm infections by using bioluminescent imaging.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
24512958
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"