Comparative Study
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Comparison of 3 real-time, quantitative murine models of staphylococcal biofilm infection by using in vivo bioluminescent imaging.

Comparative Medicine 2014 Februrary
Biofilm formation represents a unique mechanism by which Staphylococcus aureus and other microorganisms avoid antimicrobial clearance and establish chronic infections. Treatment of these infections can be challenging, because the bacteria in the biofilm state are often resistant to therapies that are effective against planktonic bacteria of the same species. Effective animal models for the study of biofilm infections and novel therapeutics are needed. In addition, there is substantial interest in the use of noninvasive, in vivo data collection techniques to decrease the animal numbers required for the execution of infectious disease studies. To ad- dress these needs, we evaluated 3 murine models of implant-associated biofilm infection by using in vivo bioluminescent imaging techniques. The goal of these studies was to identify the model that was most amenable to development of sustained infections that could be imaged repeatedly in vivo by using bioluminescent technology. We found that the subcutaneous mesh and tibial intramedullary pin models both maintained consistent levels of bioluminescence for as long as 35 d after infection, with no implant loss experienced in either model. In contrast, a subcutaneous catheter model demonstrated significant incidence of incisional ab- scessation and implant loss by day 20 after infection. The correlation of bioluminescent measurements and bacterial enumeration was strongest with the subcutaneous mesh model. Among the 3 models we evaluated, the subcutaneous mesh model is the most appropriate animal model for prolonged study of biofilm infections by using bioluminescent imaging.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app