JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Agrobacterium-mediated genetic transformation and plant regeneration of the hardwood tree species Fraxinus profunda.

This transformation and regeneration protocol provides an integral framework for the genetic improvement of Fraxinus profunda (pumpkin ash) for future development of plants resistant to the emerald ash borer. Using mature hypocotyls as the initial explants, an Agrobacterium tumefaciens-mediated genetic transformation system was successfully developed for pumpkin ash (Fraxinus profunda). This transformation protocol is an invaluable tool to combat the highly aggressive, non-native emerald ash borer (EAB), which has the potential to eliminate native Fraxinus spp. from the natural landscape. Hypocotyls were successfully transformed with Agrobacterium strain EHA105 harboring the pq35GR vector, containing an enhanced green fluorescent protein (EGFP) as well as a fusion gene between neomycin phosphotransferase (nptII) and gusA. Hypocotyls were cultured for 7 days on Murashige and Skoog (MS) medium with 22.2 μM 6-benzyladenine (BA), 4.5 μM thidiazuron (TDZ), 50 mg L(-1) adenine hemisulfate (AS), and 10 % coconut water (CW) prior to transformation. Hypocotyls were transformed using 90 s sonication plus 10 min vacuum infiltration after Agrobacterium was exposed to 100 μM acetosyringone for 1 h. Adventitious shoots were regenerated on MS medium with 22.2 μM BA, 4.5 μM TDZ, 50 mg L(-1) AS, 10 % CW, 400 mg L(-1) timentin, and 20 mg L(-1) kanamycin. Timentin at 400 and 20 mg L(-1) kanamycin were most effective at controlling Agrobacterium growth and selecting for transformed cells, respectively. The presence of nptII, GUS (β-glucuronidase), and EGFP in transformed plants was confirmed using polymerase chain reaction (PCR), while the expression of EGFP was also confirmed through fluorescent microscopy and reverse transcription-PCR. This transformation protocol provides an integral foundation for future genetic modifications of F. profunda to provide resistance to EAB.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app