JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Computational approaches for analyzing the mechanics of atherosclerotic plaques: a review.

Vulnerable and stable atherosclerotic plaques are heterogeneous living materials with peculiar mechanical behaviors depending on geometry, composition, loading and boundary conditions. Computational approaches have the potential to characterize the three-dimensional stress/strain distributions in patient-specific diseased arteries of different types and sclerotic morphologies and to estimate the risk of plaque rupture which is the main trigger of acute cardiovascular events. This review article attempts to summarize a few finite element (FE) studies for different vessel types, and how these studies were performed focusing on the used stress measure, inclusion of residual stress, used imaging modality and material model. In addition to histology the most used imaging modalities are described, the most common nonlinear material models and the limited number of models for plaque rupture used for such studies are provided in more detail. A critical discussion on stress measures and threshold stress values for plaque rupture used within the FE studies emphasizes the need to develop a more location and tissue-specific threshold value, and a more appropriate failure criterion. With this addition future FE studies should also consider more advanced strain-energy functions which then fit better to location and tissue-specific experimental data.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app