Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Persistence of Th17/Tc17 cell expression upon smoking cessation in mice with cigarette smoke-induced emphysema.

Th17 and Tc17 cells may be involved in the pathogenesis of chronic obstructive pulmonary disease (COPD), a disease caused predominantly by cigarette smoking. Smoking cessation is the only intervention in the management of COPD. However, even after cessation, the airway inflammation may be present. In the current study, mice were exposed to room air or cigarette smoke for 24 weeks or 24 weeks followed by 12 weeks of cessation. Morphological changes were evaluated by mean linear intercepts (Lm) and destructive index (DI). The frequencies of CD8(+)IL-17(+)(Tc17) and CD4(+)IL-17(+)(Th17) cells, the mRNA levels of ROR gamma and IL-17, and the levels of IL-8, TNF-alpha, and IFN-gamma in lungs or bronchoalveolar lavage fluid of mice were assayed. Here we demonstrated that alveolar enlargement and destruction induced by cigarette smoke exposure were irreversible and that cigarette smokeenhanced these T-cell subsets, and related cytokines were not significantly reduced after smoking cessation. In addition, the frequencies of Th17 and Tc17 cells in lungs of smoke-exposed mice and cessation mice were positively correlated with emphysematous lesions. More important, the frequencies of Tc17 cells were much higher than Th17 cells, and there was a significantly positive correlation between Th17 and Tc17. These results suggested that Th17/Tc17 infiltration in lungs may play a critical role in sustaining lung inflammation in emphysema. Blocking the abnormally increased numbers of Tc17 and Th17 cells may be a reasonable therapeutic strategy for emphysema.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app